Alunperin totesit "Aika-avaruudessa jokainen tapahtuma etenee kausaliteetin itseisarvoista vauhtia c". Kuten linkkaamissi lähteissäkin todetaan: tapahtumat ovat pisteitä aika-avaruudessa. Ne eivät etene. Tätä koetin sinulle selittää useammassa viestissä.Eusa kirjoitti: ↑02 Syys 2024, 11:24QS kirjoitti: ↑02 Syys 2024, 08:54Eusa kirjoitti: ↑01 Syys 2024, 22:18QS kirjoitti: ↑01 Syys 2024, 21:02Eusa kirjoitti: ↑01 Syys 2024, 20:43QS kirjoitti: ↑01 Syys 2024, 20:23
En tiedä mitä kausaalisen aikajärjestyksen filosofia tarkoittaa.
Suhteellisuusteorissa nyt kuitenkin on niin, että tapahtumat eivät etene, vaan kappaleet/kellot/vuorovaikutukset etenevät esim tapahtumasta P tapahtumaan Q.
Kausaalisuuteen riittää moniston aikasuunnistus, joka takaa sen, että ajan nuoli ei vaihda suuntaa.Kyllä kausaaliset tapahtumat etenevät luoden itseisaikapolkua. Ja aikasuunnistus tulee suoraan siitä, että mikään projektiota määrittävä itseisaika ei voi vähetä, perustuu entropian kasvuun. Valokello on triviaali kausaalitapahtumien ketju peilien välissä.Sulla tapahtuman määritelmä on jotain eusafysiikan juttuja, joista minä en mitään tiedä.
Suhteellisuusteoriassa tapahtumat P ja Q vastaavat euklidisen avaruuden pisteitä P ja Q. Voidaan edetä pisteestä P=(1,2) pisteeseen Q=(5,7), mutta piste P ei etene pisteeseen Q ihan jo siitäkin syystä, että P on eri piste kuin Q
Samoin suhteellisuusteoriassa tapahtuma P ei etene tapahtumaan Q, sillä ne ovat kaksi eri tapahtumaa. Sen sijaan voidaan edetä tapahtumasta P tapahtumaan Q.
Tapahtumien P ja Q välillä on kausaalinen yhteys tai ei ole. Esimerkiksi tapahtumien P=(t,x)=(0,7) ja Q=(0,9) välillä ei ole kausaalista yhteyttä, sillä mikään ei voi edetä pisteestä x=7 pisteeseen x=9 siten, että aika ei kulu lainkaan.
Pisteiden P=(0,2) ja Q=(5,2) välillä on kausaalinen yhteys, sillä eteneminen hoituu esimerkiksi ihan vaan pysymällä pisteessä x=2 niin kauan, että 5 aikayksikköä on kulunut.In Minkowski spacetime, we typically refer to "event points" rather than "events."Ketä ovat we ?Poimintoja:
- Wikipedia, world lines "Although the light cones are the same for all observers at a given spacetime event, different observers, with differing velocities but coincident at the event (point) in the spacetime, have world lines that cross each other at an angle determined by their relative velocities, and thus they have different simultaneous hyperplanes."
- Wolfram, Minkowski spacetime "Timelike intervals lie within the future or past lightcones, projected as yellow triangles in the graphic. The red lines meeting at the event point are parallel to their respective red axes. Note that time is not ordered in a spacelike event: past and future are not invariant; nor is space ordered in a timelike event: left and right are not invariant."
- MTW, Gravitation "But with all the daring in the world, how is one to drive a nail into spacetime to mark a point? Happily, nature provides its own way to localize a point in spacetime, as Einstein was the first to emphasize. Characterize the point by what happens there! Give a point in spacetime the name "event." Where the event lies is denned as clearly and sharply as where two straws cross each other in a barn full of hay (Figure 1.2). To say that the event marks a collision of such and such a photon with such and such a particle is identification enough. The world lines of that photon and that particle are rooted in the past and stretch out into the future. They have a rich texture of connections with nearby world lines. These nearby world lines in turn are linked in a hundred ways with world lines more remote. How then does one tell the location of an event? Tell first what world lines participate in the event. Next follow each of these world lines. Name the additional events that they encounter. These events pick out further world lines. Eventually the whole barn of hay is catalogued. Each event is named. One can find one's way as surely to a given intersection as the city dweller can pick his path to the meeting of St. James Street and Piccadilly. No numbers. No coordinate system. No coordinates.
That most streets in Japan have no names, and most houses no numbers, illustrates one's ability to do without coordinates. One can abandon the names of two world lines as a means to identify the event where they intersect. Just as one could name a Japanese house after its senior occupant, so one can and often does attach arbitrary names to specific events in spacetime, as in Box 1.1. Coordinates, however, are convenient. How else from the great thick catalog of events, randomly listed, can one easily discover that along a certain world line one will first encounter event Trinity, then Baker, then Mike, then Argus—but not the same events in some permuted order?
To order events, introduce coordinates! (See Figure 1.3.) Coordinates are four indexed numbers per event in spacetime; on a sheet of paper, only two. Trinity acquires coordinates (x°,x¹,x²,x³) = (77,23,64,11)."
Arkikielessä "tapahtumat etenevät" mutta suhteellisuusteoriassa tapahtuma on piste aika-avaruudessa.
Asia loppuun käsitelty?