Varaktori kirjoitti: ↑13 Kesä 2024, 20:47
QS kirjoitti: ↑10 Kesä 2024, 14:05
Skalaarikentän Lagrangen tiheys se selvästi on. Kvantti-skalaarikenttiä tiedetään luonnossa vain yksi, Higgsin kenttä.
Yritin saada sinne ujutettua negatiivista massaa ja piti hörhöttää lisää tähän tapaan:
$$\partial_\mu \partial^\mu \phi + \mu^2 \phi = 0
$$
$$V(\phi) = -\frac{1}{2} \mu^2 \phi^2
$$
Takyoneista tuli puhetta toisaalla niin nuppi nyrjähti hörhötysmoodiin. No ehkä parempi pysyä näistä erossa ja keskittyä täällä enemmän selaisiin oikeasti olemassa oleviin asioihin.
Kokeilin myös tätä. Jos käyttää aiemmin kirjoittamaasi ja signatuuria (+,-,-,-)
\(\begin{align*}\mathcal{L} &= \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} m^2 \phi^2 \\ &= \frac{1}{2} \left(\partial_0 \phi \partial^0 \phi - \partial_i \phi \partial^i \phi\right) + \frac{1}{2} m^2 \phi^2\end{align*}\)
niin mielestäni Euler-Lagrange antaa liikeyhtälöksi
\(\partial_\mu \partial^\mu \phi - m^2 \phi = 0\)
mikä poikkeaa Klein-Gordon yhtälöstä siten, että massan \(m^2\) edessä miinus. Kun massaksi asettaa \(-im\), niin yhtälö muuttuu tosiaan Klein-Gordon yhtälöksi.
Ennen tuon imaginaarisen massa sijoittamista voidaan \(\mathcal{L}\):stä poimia kineettinen termi ja potentiaalitermi (L = K - V)
\(\begin{align*}K(\phi)&\sim \partial_0 \phi \partial^0\phi \\
V(\phi)&\sim\partial_i \phi \partial^i\phi-m^2\phi^2\end{align*}\)
Tässä muodossa \(V(\phi)\) pääsee rajoittamatta negatiivisen energian puolelle, mikä tarkoittaa epästabiilia kentän energiaa, kun \(\phi\) poikkeaa nollasta. No, tuskin ongelma, jos hyväksyy massan imaginaariseksi
, jolloin \(V(\phi)\) on ihan kelvollinen.