Lainaa
Re: Suhteellisuusteorian kritiikkiä
Kontra kirjoitti: 7.10.2025, 11:13
Goswell kirjoitti: 7.10.2025, 10:29 Tyhjiössä tasainen nopeus ja olla paikoillaan on sama asia kellonkäynnin kannalta. "Kellon" käynti voi todella hidastua ja se voi vain näyttää siltä ulkpuolisen silmin.
Tyhjiöllä ei ole mitään merkitystä - se ei vapauta koordinaatistosta.
Kaikki tapahtumat tapahtuvat jossakin koordinaatistossa, eikä mikään koordinaatisto ole liikkumaton.
Tyhjiöllä on valtava merkitys, eikä mitään koordinaatistoja tarvita kun asiat tehdään oikein. Jokainen on kuitenkin keskipiste jonka suhteen kaikki muut liikkuu ja oma liiketila on merkityksetön kunhan ei ole kiihtyvyyttä.
Ts tasaisessa nopeudessa ja paikoillaan olossa ei ole mitään eroa tyhjiössä, eli, nopeus on vain suhteellista.
Lainaa
Re: Suhteellisuusteorian kritiikkiä
Goswell kirjoitti: 7.10.2025, 11:31
Kontra kirjoitti: 7.10.2025, 11:13
Goswell kirjoitti: 7.10.2025, 10:29 Tyhjiössä tasainen nopeus ja olla paikoillaan on sama asia kellonkäynnin kannalta. "Kellon" käynti voi todella hidastua ja se voi vain näyttää siltä ulkpuolisen silmin.
Tyhjiöllä ei ole mitään merkitystä - se ei vapauta koordinaatistosta.
Kaikki tapahtumat tapahtuvat jossakin koordinaatistossa, eikä mikään koordinaatisto ole liikkumaton.
Tyhjiöllä on valtava merkitys, eikä mitään koordinaatistoja tarvita kun asiat tehdään oikein. Jokainen on kuitenkin keskipiste jonka suhteen kaikki muut liikkuu ja oma liiketila on merkityksetön kunhan ei ole kiihtyvyyttä.
Ts tasaisessa nopeudessa ja paikoillaan olossa ei ole mitään eroa tyhjiössä, eli, nopeus on vain suhteellista.
Usko nyt ihan sovinnolla, että kaikki tapahtuu aina jossakin koordinaatistossa, ettei tarvi tulla sitä fysiikan kirjalla hakkaamaan sun päähäs.
Esim ISS asema liikkuu Maan koordinaatistossa, Maa liikkuu Auringon koordinaatistossa, Aurinko liikkuu Linnunradan koordinaatistossa, Linnunrata liikkuu jonkin glaksiryhmän koordinaatistossa ja galaksiryhmä Universumin koordinaatistossa.
Ja se hippunen, jonka kuvittelet huilivansa tyhjiössä autuaan tietämättömänä mistään mitään, on noiden kaikkien koordinaatistojen vanki.
Avatar
Lainaa
Re: Suhteellisuusteorian kritiikkiä
Kontra kirjoitti: 7.10.2025, 09:58
QS kirjoitti: 7.10.2025, 09:08 Elektronit kannattaa jättää tuonnemmaksi, sillä noudattavat kvanttifysiikan lainalaisuuksia, ja eivät kierrä ydintä kuten planeetat aurinkoa.

Klassisesti mielenkiintoisempi setuppi on esimerkiksi jousesta ja massasta rakennettu värähtelijä, ja sen jaksonaika. Laitteen voi tulkita kelloksi, ja sen tarkastelu liikkuvassa koordinaatistossa kertoo paljon asioita. Värähtely voi siis tapahtua liikkeen suunnassa, tai mielivaltaisessa kulmassa liikesuuntaan nähden.
No siinäkin liikkuvan kellon aika Newtonin mekaniikalla ja suhteellisuusteorialla antavat eri tuloksen. Newtonin mukaan kellon aika ei hidastu, mutta suhtiksen mukaan hidastuu koordinaatistossa.
Toki, mutta tarkoitin sitä, että ihan Hooken lakia noudattava harmoninen värähtelijä voidaan ajatella kellolaitteena, jonka jaksonaika (eräässä muodossaan) on \(T = 2 \pi \sqrt{m/k}\), ja kulmataajuus \(\omega = \sqrt{k/m}\). Nämä voidaan helposti johtaa Newtonin mekaniikan liikeyhtälöstä \(F = m\ddot x = -kx\).

Tavoite on käsitellä värähtelijä siten, että laite toimii oikein myös erityisessä suhteellisuusteoriassa, kun se liikkuu havaitsijan suhteen vakionopeudella \(\mathbf v\). Jaksonajan \(T\) lausekkeessa täytyy siis näkyä Minkowskiavaruuden aikadilataatio. Tarkastelussa myös huomioitava, että värähtelyakseli \(x\) ja nopeus \(\mathbf v\) eivät välttämättä ole yhdensuuntaiset.
Lainaa
Re: Suhteellisuusteorian kritiikkiä
QS kirjoitti: 7.10.2025, 16:38
Kontra kirjoitti: 7.10.2025, 09:58
QS kirjoitti: 7.10.2025, 09:08 Elektronit kannattaa jättää tuonnemmaksi, sillä noudattavat kvanttifysiikan lainalaisuuksia, ja eivät kierrä ydintä kuten planeetat aurinkoa.

Klassisesti mielenkiintoisempi setuppi on esimerkiksi jousesta ja massasta rakennettu värähtelijä, ja sen jaksonaika. Laitteen voi tulkita kelloksi, ja sen tarkastelu liikkuvassa koordinaatistossa kertoo paljon asioita. Värähtely voi siis tapahtua liikkeen suunnassa, tai mielivaltaisessa kulmassa liikesuuntaan nähden.
No siinäkin liikkuvan kellon aika Newtonin mekaniikalla ja suhteellisuusteorialla antavat eri tuloksen. Newtonin mukaan kellon aika ei hidastu, mutta suhtiksen mukaan hidastuu koordinaatistossa.
Toki, mutta tarkoitin sitä, että ihan Hooken lakia noudattava harmoninen värähtelijä voidaan ajatella kellolaitteena, jonka jaksonaika (eräässä muodossaan) on \(T = 2 \pi \sqrt{m/k}\), ja kulmataajuus \(\omega = \sqrt{k/m}\). Nämä voidaan helposti johtaa Newtonin mekaniikan liikeyhtälöstä \(F = m\ddot x = -kx\).

Tavoite on käsitellä värähtelijä siten, että laite toimii oikein myös erityisessä suhteellisuusteoriassa, kun se liikkuu havaitsijan suhteen vakionopeudella \(\mathbf v\). Jaksonajan \(T\) lausekkeessa täytyy siis näkyä Minkowskiavaruuden aikadilataatio. Tarkastelussa myös huomioitava, että värähtelyakseli \(x\) ja nopeus \(\mathbf v\) eivät välttämättä ole yhdensuuntaiset.
Ei akselien tarvitse olla yhdensuuntaiset. Kyllä nopeus summautuu komponenttina on se värähtelijän akseli mihin suuntaan tahansa - aika hidastuu yhtä paljon akselin suunnasta riippumatta.

Eihän se itse värähtelijän liike miksikään muutu tasaisella nopeudella, mutta koordinaatistossa se koetaan muuttuvaksi. Eli ei nopeus noihin esittämiisi yhtälöihin mitään vaikuta. Tuo voi olla vaikea ymmärtää, mutta niin siinä vaan käy suhtiksen taikatemppuna.
Kun värähtelijä tuodaan takaisin, kuitenkin sen aika on hidastunut, koska se on ollut eri ajassa kuin koordinaatisto.
Avatar
Lainaa
Re: Suhteellisuusteorian kritiikkiä
Kontra kirjoitti: 7.10.2025, 21:17 aika hidastuu yhtä paljon akselin suunnasta riippumatta.
Mutta pituuskontraktio vain liikkeen suunnassa. Siksi tämä ”mekaaninen kellolaite” on mielenkiintoisempi kuin ”valokello”.

Laite nimittäin mittaa ajan oikein akselin suunnasta riippumatta. Sen laskeminen on ihan hauska tehtävä, joka johdattelee relativistisen voiman lakiin.
Lainaa
Re: Suhteellisuusteorian kritiikkiä
\(m\frac{d^2 x^\mu}{d\tau^2} = -\,k\,P^\mu{}_\nu\,x^\nu, \qquad P^\mu{}_\nu = \delta^\mu{}_\nu + \frac{u^\mu u_\nu}{c^2}\)
\(m\frac{d^2 \mathbf{x}}{dt_{\rm rest}^2} = -k\,\mathbf{x}, \qquad \omega_0=\sqrt{\frac{k}{m}},\qquad T_0=2\pi\sqrt{\frac{m}{k}}\)
\(\omega_{\rm obs}=\frac{\omega_0}{\gamma},\qquad T_{\rm obs}=\gamma\,T_0 = 2\pi\gamma\sqrt{\frac{m}{k}}\)
\(x_\parallel(t)=\frac{A_\parallel}{\gamma}\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big), \qquad x_\perp(t)=A_\perp\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big)\)
Siinä teille muutama suhteellisuusteorian harakanvarvas. :tongueout:
Abezethibou·daemon unimanus et unialis·abyssorum legatus·cuius nomen terram scindit. In tenebris lucet·in luce obscuratur. Per fractas alas suadet·per manum perditam ligat.
Per sigillum Beelzebub·Abezethibou inferorum·per sanguinem et ignem·responde mihi!
Lainaa
Re: Suhteellisuusteorian kritiikkiä
Abezethibou kirjoitti: 7.10.2025, 21:50 \(m\frac{d^2 x^\mu}{d\tau^2} = -\,k\,P^\mu{}_\nu\,x^\nu, \qquad P^\mu{}_\nu = \delta^\mu{}_\nu + \frac{u^\mu u_\nu}{c^2}\)
\(m\frac{d^2 \mathbf{x}}{dt_{\rm rest}^2} = -k\,\mathbf{x}, \qquad \omega_0=\sqrt{\frac{k}{m}},\qquad T_0=2\pi\sqrt{\frac{m}{k}}\)
\(\omega_{\rm obs}=\frac{\omega_0}{\gamma},\qquad T_{\rm obs}=\gamma\,T_0 = 2\pi\gamma\sqrt{\frac{m}{k}}\)
\(x_\parallel(t)=\frac{A_\parallel}{\gamma}\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big), \qquad x_\perp(t)=A_\perp\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big)\)
Siinä teille muutama suhteellisuusteorian harakanvarvas. :tongueout:
On kyllä suhteellisen sekavaa sotkua.
Lainaa
Re: Suhteellisuusteorian kritiikkiä
QS kirjoitti: 7.10.2025, 21:42
Kontra kirjoitti: 7.10.2025, 21:17 aika hidastuu yhtä paljon akselin suunnasta riippumatta.
Mutta pituuskontraktio vain liikkeen suunnassa. Siksi tämä ”mekaaninen kellolaite” on mielenkiintoisempi kuin ”valokello”.

Laite nimittäin mittaa ajan oikein akselin suunnasta riippumatta. Sen laskeminen on ihan hauska tehtävä, joka johdattelee relativistisen voiman lakiin.
Sitä vaan tässä ihmettelen miten voi mitata sellaista mitä ei ole olemassakaan?
Avatar
Lainaa
Re: Suhteellisuusteorian kritiikkiä
Abezethibou kirjoitti: 7.10.2025, 21:50 \(m\frac{d^2 x^\mu}{d\tau^2} = -\,k\,P^\mu{}_\nu\,x^\nu, \qquad P^\mu{}_\nu = \delta^\mu{}_\nu + \frac{u^\mu u_\nu}{c^2}\)
\(m\frac{d^2 \mathbf{x}}{dt_{\rm rest}^2} = -k\,\mathbf{x}, \qquad \omega_0=\sqrt{\frac{k}{m}},\qquad T_0=2\pi\sqrt{\frac{m}{k}}\)
\(\omega_{\rm obs}=\frac{\omega_0}{\gamma},\qquad T_{\rm obs}=\gamma\,T_0 = 2\pi\gamma\sqrt{\frac{m}{k}}\)
\(x_\parallel(t)=\frac{A_\parallel}{\gamma}\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big), \qquad x_\perp(t)=A_\perp\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big)\)
Siinä teille muutama suhteellisuusteorian harakanvarvas. :tongueout:
Kyllä, tutun näköisiä, ja tähän mainittuun setuppiin liittyviä.
Lainaa
Re: Suhteellisuusteorian kritiikkiä
QS kirjoitti: 9.10.2025, 18:03
Abezethibou kirjoitti: 7.10.2025, 21:50 \(m\frac{d^2 x^\mu}{d\tau^2} = -\,k\,P^\mu{}_\nu\,x^\nu, \qquad P^\mu{}_\nu = \delta^\mu{}_\nu + \frac{u^\mu u_\nu}{c^2}\)
\(m\frac{d^2 \mathbf{x}}{dt_{\rm rest}^2} = -k\,\mathbf{x}, \qquad \omega_0=\sqrt{\frac{k}{m}},\qquad T_0=2\pi\sqrt{\frac{m}{k}}\)
\(\omega_{\rm obs}=\frac{\omega_0}{\gamma},\qquad T_{\rm obs}=\gamma\,T_0 = 2\pi\gamma\sqrt{\frac{m}{k}}\)
\(x_\parallel(t)=\frac{A_\parallel}{\gamma}\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big), \qquad x_\perp(t)=A_\perp\cos\!\Big(\frac{\omega_0}{\gamma}t+\phi\Big)\)
Siinä teille muutama suhteellisuusteorian harakanvarvas. :tongueout:
Kyllä, tutun näköisiä, ja tähän mainittuun setuppiin liittyviä.
Mä tässä odottelen että joku tekee malliksi täsmällisen derivoinnin nelivektoreista. Sut jäävään kun tiedän että menisi varmasti vasurilla. :tongueout: Mutta mitä tapahtuu jos tehdään ajatuskoe jossa heilurikin värähtelee relativistisella nopeudella? ;)
Abezethibou·daemon unimanus et unialis·abyssorum legatus·cuius nomen terram scindit. In tenebris lucet·in luce obscuratur. Per fractas alas suadet·per manum perditam ligat.
Per sigillum Beelzebub·Abezethibou inferorum·per sanguinem et ignem·responde mihi!
Vastaa Viestiin